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Electron tunneling through a two-stage Kondo system constituted by a double quantum dot molecule side
coupled to a quantum wire under the effect of a finite external potential is studied. We found that I-V
characteristic shows a negative differential conductance region induced by the electronic correlation. This
phenomenon is a consequence of the properties of the two-stage Kondo regime under the effect of an external
applied potential that takes the system out of equilibrium. The problem is solved using the mean-field finite-U
slave-boson formalism.
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I. INTRODUCTION

Many devices exhibit negative differential conductance
�NDC� as multiple quantum wells, double barrier, double
quantum dots, etc.1–6 The NDC has applications as amplifiers
and oscillators in the microwave, millimeter-wave, and tera-
hertz frequency ranges. Extensive experimental and theoret-
ical investigation have been devoted to the study of the I-V
characteristics and NDC phenomenon in double quantum dot
molecules.5–9 Moreover, there is a wide literature on trans-
port through double quantum dots �DQD� in different geom-
etries, e.g., DQD in series and in parallel.9,10 Two aspects of
electronic transport through quantum dots have attracted
great attention in the last years: the Coulomb blockade effect
and the Kondo effect.11–13 Recently Kondo effect has been
studied in side attached14 and parallel quantum dots.15,16

Electron transport experiments showed that Kondo and Fano
resonances occur simultaneously.17 Multiple scattering of
traveling electronic waves on a localized magnetic state are
crucial for the formation of both resonances. The condition
for the Fano resonance is the existence of two scattering
channels: a discrete level and a broad continuum band.18

An alternative configuration consists of a double quantum
dot molecule side coupled to a perfect quantum wire
�QW�.19,20 This structure is reminiscent of the T-shaped
quantum wave guides.21 In this case, the QDs act as scatter-
ing centers in close analogy with the traditional Kondo
effect.22

Although the electron-electron interaction does play an
important role in many systems that exhibit negative differ-
ential conductance, for instance, producing bistabilities in the
current, it is not the driving force of the negative conduc-
tance itself. In this work instead, we study a system in the
Kondo regime with an I-V characteristics that possesses a
NDC region that is induced by the electronic correlation it-
self, tuned by the external potential and by the parameters of
the system.

The system is constituted by a quantum dot molecule side
coupled to a quantum wire, as shown in Fig. 1. We use the
finite-U slave-boson mean-field approach �SBMFA�, which
was initially developed by Kotliar and Ruckenstein23 and

used later by Dong and Lei24 to study the transport through
coupled double quantum dots connected to leads. This ap-
proach enforces the correspondence between the impurity
fermions and the auxiliary bosons to a mean-field level to
release the U=� restriction. This allows us to treat nonper-
turbatively the dot-lead coupling for an arbitrary strength of
the Coulomb interaction U.24 As it is well known, the finite
U slave-boson mean-field formalism does not possess the
pathologies of the infinite U one which produces a decou-
pling of the impurity site from the rest of the system above
the Kondo temperature and also well inside the Kondo re-
gime. More importantly for our case, we require a finite U
treatment because otherwise the exchange interaction, one of
the energies controlling the physics of the system we study,
is reduced to zero.

In a previous work we study this system in a thermody-
namic equilibrium situation. We found that in the weak-
interaction regime, when the direct antiferromagnetic inter-
action between the dots is less than the Kondo temperature
associated to the internal dot, the transmission spectrum
shows a structure with two antiresonances localized at the
renormalized molecular energies of the double quantum
dot.19 The local density of states �LDOS� of the system
shows that when the Kondo correlations are dominant the
system is in a two-stage Kondo regime with two different
temperatures Tk1 and Tk2, each one associated to a dot.

In the present paper we study this system under the effect
of a finite external field, which takes it out of the thermody-
namic equilibrium, modifying the Kondo regime and even
destroying it for enough large fields. This process has funda-
mental consequences on the transport properties of the sys-

FIG. 1. Scheme of DQD attached to a lead �perfect QW�. The
QW is coupled to the left �L� and right �R�.
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tem and, in particular, creates a remarkable NDC in the I-V
characteristics. This NDC phenomenon can be understood
realizing that the applied bias destroys the lower-temperature
Kondo state of the external dot modifying the capability of
the other to interfere on the current that goes along the sys-
tem. The scenario created by the small external bias neces-
sary to disrupt this Kondo regime can be adequately de-
scribed by SBMFA.7

II. MODEL

Let us consider a quantum dot molecule side coupled to a
perfect quantum wire �QW� �see Fig. 1�. We describe it by
the two-impurity Anderson Hamiltonian. Each dot has a
single level energy �l �with l=1,2� and equal intradot Cou-
lomb repulsion U. The side attached quantum dot molecule
is coupled to the QW with coupling t0. The QW sites have
zero local energies and a hopping parameter t.

The corresponding model Hamiltonian is

H0 = − t�
i,�

�ci,�
† ci+1,� + H.c.� − �

�

��t0c0,�
† + tcf2,�

† �f1,� + H.c.�

+ �
l=1,2,�

���l +
U

2
n̂l,−��n̂l,�	 , �1�

where ci,�
† �ci,�� is the creation �annihilation� operator of an

electron with spin � at the ith site of the quantum wire; f l,�
†

�f l,�� is the creation �annihilation� operator of an electron
with spin � in the lth QD, n̂l,� is the corresponding number
operator, tc is the hopping matrix element between the dots,
and �l correspond to the energy of the local states at the dots.

III. SLAVE-BOSON MEAN-FIELD THEORY

To find the solution of this correlated fermions system for
finite U that guaranties that the exchange interaction between
the dots is correctly treated without incorporating extra term
in the Hamiltonian. We appeal to an analytical approach
where, generalizing the infinite-U slave-boson
approximation25 the Hilbert space is enlarged at each site, to
contain in addition to the original fermions a set of four
bosons23 represented by the creation �annihilation� operators

êl
† �êl�, p̂l,�

† �p̂l,��, and d̂l
† �d̂l� for the lth dot. They act as

projectors onto empty single occupied �with spins up and
down� and doubly occupied electron states, respectively.
Then, each creation �annihilation� operator of an electron
with spin � in the lth QD is substituted by f l,�

† Zl,�
† �Zl,�f l,��,

where

Zl,� = �1 − d̂l
†d̂l − p̂l,�

† p̂l,��−1/2�êl
†p̂l,� + p̂l,−�

† d̂l�

��1 − êl
†êl − p̂l,−�

† p̂l,−��−1/2. �2�

As the problem is solved adopting the U-finite SBMFA, the
operator is chosen to reproduce the correct U→0 limit in the
mean-field approximation without changing neither the ei-
genvalues nor the eigenvector.24

The constraint, i.e., the completeness relation ��p̂l,�
† p̂l,�

+ êl
†êl+ d̂l

†d̂l=1 and the condition among fermions and bosons

nl,�− p̂l,�
† p̂l,�− d̂l

†d̂l=0, is incorporated with Lagrange multi-
pliers �l

�1� and �l,�
�2� into the Hamiltonian. Also in the mean-

field approximation all the boson operators are replaced by
their expectation values pl,� ,el and dl which can be chosen,
without loss of generality, as real numbers. The Hamiltonian
in this new and enlarged Hilbert space is H=Hb+He, where

Hb = �
l=1,2

�l
�1��pl,↑

2 + pl,↓
2 + el

2 + dl
2 − 1� − �

l=1,2,�
�l,�

�2��pl,�
2 + dl

2�

+ U �
l=1,2

dl
2 �3�

depends explicitly only on the boson expectation values �el
= 
el�= 
el

†� and equivalently for the others operators� and the
Lagrange multipliers. The Hamiltonian He can be written as

He = − t�
i,�

�ci,�
† ci+1,� + H.c.� + �

l=1,2,�
�̃l,�nl,�

− �
�

�t̃0,��c0,�
† f1,� + H.c.� + t̃c,��f1,�

† f2,� + H.c.�� .

�4�

The tight-binding Hamiltonian depends implicitly on the bo-
son expectation values through the parameters �̃l,�=�l,�

+�l,�
�2�, t̃0,�= t0Z̃l,� , t̃c,�= tcZ̃1,�Z̃2,�, where Z̃l,� is the value as-

sumed by the operator Zl,� when the four boson operators are
substituted by their mean values in Eq. �2�,

Z̃l,� =
pl,��el + dl�

��1 − dl
2 − pl,�

2 ��1 − el
2 − pl,−�

2 �
. �5�

The boson operator expectation values and the Lagrange
multipliers are determined by minimizing the energy 
H�
with respect to these quantities. It is obtained in this way a
set of nonlinear equations for each quantum dot, relating the
expectation values of the four bosonic operators, the three
Lagrange multipliers, and the electronic expectation values,

pl,�
2 = 
n̂l,�� − dl

2, �6a�

el
2 = 1 − �

�


n̂l,�� + dl
2, �6b�

�l
�1� =

t0

el
�
�


f l,�
† c0,��

�Z̃l,�

�el
, �6c�

�l
�1� − �l,�

�2� =
t0

pl,�
�
��


f l,��
† c0,���

�Z̃l,��

�pl,�
, �6d�

U + �l
�1� − �

�

�l,�
�2� =

t0

dl
�
�


f l,�
† c0,��

�Z̃l,�

�dl
, �6e�

where in the absence of external magnetic field the solutions
are spin independent.

To obtain the electronic expectation values 
¯�, the
Hamiltonian He is diagonalized. Their stationary states can
be written as

LARA, ORELLANA, AND ANDA PHYSICAL REVIEW B 78, 045323 �2008�

045323-2



�k� = �
j=−�

�

aj
kj� + �

l=1

2

bl
kl� , �7�

where aj
k and bl

k are the probability amplitudes to find the
electron at the site j and at the lth QD, respectively, with
energy �=−2t cos k. As we study the paramagnetic case the
spin index is neglected.

The amplitudes aj
k and bl

k obey the following linear differ-
ence equations:

�aj
k = − t�aj+1

k + aj−1
k �, j � 0, �8a�

�a0
k = − t�a1

k + a−1
k � − t̃0b1

k , �8b�

�� − �̃1�b1
k = − t̃0a0

k − t̃cb2
k , �8c�

�� − �̃2�b2
k = − t̃cb1

k . �8d�

In order to study the solutions of Eqs. �8a�–�8d�, we as-
sume that the electrons are described by incident, reflected,
and transmitted plane waves with unitary, r, and � ampli-
tudes, respectively.26 That is,

aj
k = eik·j + re−ik·j �k · j 	 0� , �9a�

aj
k = �eik�·j �k · j 
 0� . �9b�

Inserting Eqs. �9a� and �9b� into Eqs. �8a�–�8d�, we get an
inhomogeneous system of linear equations for �, r, aj

k, and
bl

k, leading to the following expression in equilibrium �k
=k��:

� =
�� − �̃−��� − �̃+�

�� − �̃−��� − �̃+� + i�� − �̃d2��̃
, �10�

where the bonding ��̃−� and antibonding energies ��̃+� are

defined by �̃�= ��̃d1+ �̃d2� /2����̃d1− �̃d2�2 /4+ t̃c
2 and �̃

=t̃0
2�0 is the renormalized coupling between the double

quantum dot and the quantum wire and �0 is the density of
states of the leads at the Fermi level. In spite of the apparent
simplicity of the expression, it is necessary to remember that
the quantities t̃0 and t̃c implicitly depend on the expectation
values of the boson and fermion operators.

The transmission probability is given by T= �2,

T��� =
��� − �̃−��� − �̃+��2

��� − �̃−��� − �̃+��2 + ��� − �̃d2��̃�2
. �11�

From the amplitudes b1
k and b2

k we obtain the LDOS at the
quantum dot l �with l=1,2�,

�1 =
1



�̃�� − �̃d2�2

��� − �̃−��� − �̃+��2 + ��� − �̃d2��̃�2
, �12�

�2 =
1



�̃t̃c
2

��� − �̃−��� − �̃+��2 + ��� − �̃d2��̃�2
. �13�

In the nonequilibrium case, we suppose a finite source-
drain biased with a symmetric voltage drop. Here we are

supposing a small applied potential, which is required to dis-
rupt the Kondo regime controlled by the lower Kondo tem-
perature. This fact permits us to suppose that as we are not
very far from equilibrium the description provided by the
approximation would be capable of properly describing the
physics of the system, at least from a qualitative point of
view.7 The incident electrons from the left side �L� are in
equilibrium with the thermodynamical potential �L=�
+V /2 and those from the right side �R� with �R=�−V /2.

Once the amplitudes aj,�
k and bj,�

k are known, the elec-
tronic expectation values are obtained from


f l
†cj� =

1

2 �
�=L,R

1

N�
k�

f��k�
− ���bl

k��aj
k�, �14�

where �k�
=−2t cos k�. The current is given by

I = 2
2e

�
t �
�,k�

f��k�
− ���Im�a0

k�a1
k�� , �15�

where f��k�
−��� is the Fermi function for incident electrons

from the � side and the sum on k� is taken up to the maxi-
mum value cos−1�−�� /2t�. The quantities �l, the energies of
the local states at the dots, are taken to be equal to �1=�2
=Vg, where Vg is the gate voltage applied to the quantum
dots.

IV. RESULTS

A. Thermodynamics equilibrium case

In order to obtain a more clear insight, we study first the
system in thermodynamical equilibrium. The DOS at each
dot of the quantum molecule is shown in Fig. 2, for various
values of U, for the case tc=0.5� and Vg=−2�. As U in-
creases, U
2�, the system passes from the intermediate-
valence regime into a Kondo regime. This process is clearly
seen to occur for QD2 where the resonance shifts and be-
comes sharper as the system enters into the Kondo regime.
The same process takes place for the QD1 although the
sharpening is less accentuated. It is noticeable that as QD2

FIG. 2. LDOS at each dot �left panel, QD1 and right panel,
QD2� for tc=0.5�, Vg=−2� for various values of on site energy,
U=6� �solid line�, U=2��dotted line�, and U=0 �dashed line�.
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develops a Kondo resonance, a dip appears at the Fermi en-
ergy in the LDOS of QD1. This is produced because the spin
of the local electron at QD2 is Kondo correlated with the
conduction-band spins through the mediation of the interme-
diate dot as well at the Kondo regime. This coupling creates
a sharp peak at the LDOS of QD2 with width Tk2 and a
depletion of this same width at the Fermi level of the Kondo
peak of width Tk1 corresponding to QD1. This result implies
the existence of a two-stage Kondo regime that appears in
this system in the weak interacting limit, when tc

2 /U	Tk1,19

being Tk1 and Tk2 the Kondo temperatures associated to each
dot. It is the depletion of the LDOS of QD1 at the Fermi
level that permits the transmission to be unity. In this case,
although the side attached QD1 is in the Kondo regime, it
does not provide an alternative path for the conducting elec-
trons. As a consequence, there is no destructive interference
because there is only the direct path available for them.

In Fig. 3 we show the LDOS of each QD for different
values of Vg in the two-stage Kondo regime. As expected, the
peaks are pinned at the Fermi energy independent of the
values of Vg, a clear signal of the Kondo regime. Here it is
clearly seen at the Fermi energy the antiresonance at it QD1
and the concomitant resonance at the QD2.

B. Out of thermodynamical equilibrium situation

The previous discussion was restricted to the thermody-
namical equilibrium situation and was presented with the
purpose of clarifying the concepts involved. When an exter-
nal potential is applied the scenario changes completely. The
physics of this new situation can be explained analyzing the
current and the differential conductance dI /dV, two signifi-
cant and experimentally measurable quantities, as a function
of the applied field.

Figure 4 displays the I-V characteristics for two values of
tc and different values of U with Vg=−U /2. For U=0, the
I-V characteristics shows a plateau that is related to the Fano
antiresonances in the transmission spectrum. When the ap-
plied potential is of the order of the interdot interaction, the

transmission, due to the Fano destructive interference, is al-
most zero in the bonding and antibonding regions giving no
additional contribution to the total current as the applied po-
tential is increased. This is the origin of the plateau behavior,
shown in Fig. 4, when U=0. As U is increased, a negative
differential conductance appears in the I-V characteristics
that get more important as tc is augmented.

Figure 5 depicts the differential conductance for the same
parameters of Fig. 4. For U=0 it reflects essentially the
transmission spectrum. As U is increased the differential
conductance becomes negative in a region of the applied
potential, reflecting the fact that the NDC is a consequence
of the Coulomb interaction. It is a small effect in the
fluctuating-valence regime �
U and develops completely in
the Kondo regime �	U, increasing with tc.

In order to get insight into these results it is convenient to
write the transmission �Eq. �11�� as the superposition of Fano
and Breit-Wigner line shapes, a good approximate expres-
sion for large values of U.19 The results is

FIG. 3. LDOS at each dot �left panel, QD1 and right panel,
QD2� for tc=0.5�, U=4� for various values of the gate
voltage,Vg=−2� �solid line�,Vg=−� �dotted line�, and Vg=0
�dashed line�.

FIG. 4. I-V characteristics for tc=0.5� �solid line� and tc=�
�dashed line� for various values of U with �1=�2=−U /2.

FIG. 5. Differential conductance for tc=0.5� �solid line� and
tc=� �dashed line� for various values of U with Vg=−U /2.
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T��� �
�2

�2 + 1
+

�̃2

�2 + �̃2
, �16�

where �=� / �̃ and �̃= t̃c
2 / �̃ corresponds to the two Kondo

temperatures Tk1= �̃ and Tk2= �̃.
An analytical expression can be obtained for the current

by integrating over � the transmission probability given in
Eq. �16�.

I �
2e

h �eV − 2�̃ arctan� eV

2�� + 2�̃ arctan� eV

2�̃
�	 .

�17�

We identify each term of Eq. �17� as follows. The first
term on the right-hand side is the contribution arising from
an ideal one dimensional conductor. The second term arises
from the Kondo-Fano state with temperature Tk1 giving rise
to a quasiplateau for the current and almost zero differential

conductance when V��̃. The third term arises from the
Kondo state weakly coupled to the wire and it is responsible
for the rapid increase in the current in the region of small
applied potentials.

It is important to emphasize that in this expression the

quantities �̃ and �̃ are functions of V obtained through the

self-consistent calculation presented above. The case of �̃
=Tk2 is shown in the inset of Fig. 6. It is clear that increasing
V, both the Kondo temperature of the external dot and the
current reduce to zero simultaneously with the disappearance
of the NDC phenomenon. As mentioned above, this behavior
can be understood realizing that the effect of the external
quantum dot is to reduce the intermediate dot interference
effect on the current circulating along the leads. This role is
exercised by the external quantum dot as far as it is at the
Kondo regime. When the external potential is large enough
as to disrupt its Kondo ground state �Tk2	V� the interference
is reestablished and the current goes to zero. As Tk2 increases
with tc, for larger values of tc this disrupting process requires

bigger values of the applied potential as shown in Fig. 4.
When V increases still further it destroys as well the Kondo
regime of the intermediate quantum dot and the current rises
as depicted in this same figure. This seems to be the behavior
of a two-stage Kondo system under the effect of an external
potential. The Kondo regime of the outside quantum dot, not
directly connected to the continuum, depends on the Kondo
effect of the intermediate quantum dot. As its Kondo tem-
perature is lower, its Kondo ground state is disrupted by
lower values of V than the other dot. This process manifests
in the transport properties by the appearance of a NDC re-
gion in the current. Figure 6 displays a comparison between
the I-V characteristics of the numerical calculation and the
approximation �Eq. �17�� for U=2� and tc=0.5�. The ap-
proximation over estimates the peak of the current; however,
qualitatively, it maintains the form.

Deriving the current in Eq. �17� we obtain

�I

�V
�

2e2

h � � eV

2�̃
�2

1 + � eV

2�̃
�2 +

1

1 + � eV

2�̃
�2

+ 2
��̃

�V�arctan� eV

2�̃
� −

� eV

2�̃
�

1 + � eV

2�̃
�2�� . �18�

In the above equation, the last term is responsible for the
negative differential conductance. This term is negative be-

cause ��̃ /�V	0. This expression is able to reproduce very
well the results of the differential conductance shown in Fig.
5.

Regarding the observability of the NDC in the side-
coupled double quantum dot molecule, we consider the value
of � given by Sato et al.,17 �=3 meV. For tc=0.5� and U
=� the maximum and minimum currents are Imax�24 nA
and Imin�6 nA, respectively, giving a peak to valley ratio of
4:1. The lower Kondo temperature of the external dot for
these same parameters is of the order of 2 K. These values of
the current and temperature are well above the experimental
limits of present day techniques.

V. SUMMARY

In summary we have studied the nonequilibrium transport
through a double quantum dot molecule side coupled to a
quantum wire using the finite-U slave-boson mean-field ap-
proach at T=0 as a function of the parameters that define the
system. We find that the I-V characteristics show a remark-
able NDC, different from case reported in the literature,
which is induced by the electronic correlation. This NDC
behavior is a consequence of the properties of a two-stage
Kondo system under the effect of an external applied poten-
tial that takes the system out of equilibrium when the applied
potential is large enough to destroy the Kondo regime char-
acterized by the lower Kondo temperature.

FIG. 6. Comparison of I-V characteristics between the numeri-
cal calculation �solid line� and the approximation �Eq. �4�� �dashed

line� for U=2� and tc=0.5� with Vg=−U /2. T2K= �̃ in the inset.
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